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Abstract—A CAN-mediated oxidative cleavage of 4-aryl-3,4-dihydroxypiperidines 2Aa–Be to b-amino carbonyl compounds 3Aa–
Be and 4Aa–Be in different ratios is described. This facile strategy was also used to synthesize racemic fluoxetine (5).
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

CAN (cerium ammonium nitrate) was invented by
Smith et al. in 1936 and explored extensively in organic
reactions in the industry and academia fields.1 Represen-
tative examples include oxidative addition,2 oxidation,3

photooxidation,4 nitration,5 and deprotection,6 etc.
Many research groups successfully developed various
useful transformations by application of this reagent.
Very recently, we developed an easy and straightforward
strategy toward 4-aryl-1,2,5,6-tetrahydropyridines and
explored the related applications for synthesizing race-
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mic coerulescine, horsfiline, and baclofen as shown in
Figure 1.7

The letter presents CAN-mediated transformation of
4-aryl-3,4-dihydroxypiperidines, which provides a new
and convenient method for the preparation of 2-amino-
ethyl (b-amino) arylketones. The b-amino carbonyl
framework is structurally similar to that of known b-
amino acid derivatives. The multiple potential biological
activities of these similar structures have attracted many
efforts from synthetic chemists. Development of a
general and novel procedure for b-amino carbonyl
arbonyl compounds; Cerium ammonium nitrate; Fluoxetine.
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compounds provides an expedient entry point due to the
importance of this structural motif in organic
chemistry.8,9
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Scheme 2.
2. Results and discussion

4-Aryl-3,4-dihydroxypiperidines 2 (a, Ar = C6H5; b,
Ar = 4-FC6H4; c, Ar = 4-ClC6H4; d, Ar = 4-MeOC6H4;
e, Ar = 3-MeOC6H4) were prepared by the concise five-
step protocol from 4-hydroxypiperidine (1) (N-benzyl-
oxycarbonylation or tosylation, Jones oxidation, Grig-
nard addition, Lewis acid-mediated dehydration, and
dihydroxylation).7 Thus diols 2 were yielded by the
recrystallizations in modest yields. Then, CAN-medi-
ated oxidative cleavage of diols 2 was investigated in
the next step. Two b-amino arylketones 3 and 4 were
provided in different ratios (2:1–3:1) at refluxed tempera-
ture for 30 min as shown in Scheme 1.10

But, the oxidative cleavage of model substrate 2Aa was
unsuccessful on the other commercial available reagents
(e.g., lead tetraacetate and sodium periodate) at refluxed
temperature for 30 min. The difference between CAN
and other reagents was not clear. These results repre-
sented the interesting reaction types for different 4-aryl
groups of 3,4-dihydroxypiperidines. The experimental
results also gave similar data and are summarized in
Table 1.
Table 1. CAN-mediated oxidative cleavage of diols 2Aa–Be

Entry 2, (R, Ar), yielda

(%)
3, yieldb,c

(%)
4, yieldb,c

(%)

1 2Aa, (Cbz, C6H5), 64 3Aa, 54 4Aa, 18
2 2Ab, (Cbz, 4-FC6H4), 64 3Ab, 58 4Ab, 28
3 2Ba, (Ts, C6H5), 58 3Ba, 52 4Ba, 18
4 2Bb, (Ts, 4-FC6H4), 52 3Bb, 55 4Bb, 27
5 2Bc, (Ts, 4-ClC6H4), 56 3Bc, 52 4Bc, 20
6 2Bd, (Ts, 4-MeOC6H4), 58 3Bd, 49 4Bd, 24
7 2Be, (Ts, 3-MeOC6H4), 61 3Be, 50 4Be, 25

a All yields were based on compound 1 confirmed.
b The product ratio was adjusted based on isolated products.
c All yields were based on compound 2 confirmed.
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How is the oxidative cleavage of compounds 2 initiated
by CAN in acetonitrile? Mechanically it is not clear if
the reaction follows the same pathway as shown in
Scheme 2.2a However, the initial event may be consid-
ered to be the formation of the cation radical I from
2. Benzylic radical II can trap molecular oxygen leading
the peroxyradical III and the latter can abstract hydro-
gen from the solvent and eliminate hydroxide radical to
form the hydroperoxide IV and oxyradical V. Interme-
diate VIII can be generated via bond cleavage of V,
hydrogen abstraction of VI, and oxidative addition of
VII in the presence of excess CAN. Next, compounds
3 are provided by the repeated treatment of VIII with
molecular oxygen and CAN-mediated bond cleavage
of IX. In situ hydrolysis of compounds 3 is further pro-
vided to form compounds 4 in different ratios.

Furthermore, treatment of diols 2 with CAN did not
cause oxidative cleavage reaction at room temperature.
The reaction must be heated to increase reaction rate.
If the reaction was refluxed over 2 h, the desired prod-
ucts 3 and 4 slowly disappeared and a complex mixture
resulted. The overall reaction progress was monitored
by TLC. Therefore, the best condition for this CAN-
mediated reaction is refluxed temperature within
30 min in acetonitrile.

We had also tried to study the CAN-mediated oxidative
cleavage of 4-alkyl (methyl and ethyl functional group)
3,4-dihydroxypiperidine, but the complex products were
provided in similar condition. Although the synthetic
application is decreased, the present work is comple-
mentary to existing the methodology. We believe the
4-aryl functional group of diols 2 is an important substi-
tuent, which provides a stable benzylic radical in the ini-
tial process of oxidative cleavage.
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With the results in hand, the next focus was to examine
the conversion from compounds 3 into 4. Treatment of
compounds 3 with aqueous lithium hydroxide solution
was successfully yielded compounds 4 in nearly quanti-
tative yields.11 The present work can increase the overall
yields for the preparation of compounds 4. Based on the
experimental simplicity, the preparation of compound
4Aa was also conducted in a multigram scale (10 mmol)
with 46% overall yield. Thus enough amounts of com-
pound 4Aa were provided for synthesizing racemic flu-
oxetine by the simple two-step procedure with CAN-
mediated reaction of model substrate 2Aa and basic
hydrolysis of compound 3Aa.

Racemic fluoxetine, marketed under the trade name
Prozac�, has recently surpassed the $3 billions mark in
annual scales. Fluoxetine offers the potential for treat-
ment of additional indications such as anxiety, alcohol-
ism, chronic pain, headache, obsessive disorders, sleep
disorders, and bulimia. Due to its biological and phar-
macological importance, there have been several reports
on the total synthesis of fluoxetine.12

As shown in Scheme 3, racemic fluoxetine hydrochloride
(5) was successfully accomplished by reduction of
compound 4Aa with lithium aluminum hydride in
tetrahydrofuran, etherification with 4-chlorobenzotrifluo-
ride and sodium hydride in dimethylsulfoxide, and
subsequent hydrolysis with aqueous hydrochloric acid
solution in 52% yield.12a,13 Finally, an easy and novel
approach for total synthesis of racemic fluoxetine (5)
from 4-hydroxypiperidine (1) has been explored.
3. Conclusion

In conclusion, we explore a CAN-mediated transforma-
tion of diols 2 to two 2-aminoethyl arylketone deriva-
tives 3 and 4 with different ratios and utilize the
method to achieve the synthesis of racemic fluoxetine
(5). We are currently studying the scope of this process
as well as additional applications of this approach to
the synthesis of various potential biological activities
of compounds using 4-hydroxypiperidine (1) as the
starting material.
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